Microstructure and Wear Resistance of Ni–WC–TiC Alloy Coating Fabricated by Laser

نویسندگان

چکیده

In this study, a Ni–WC–TiC alloy coating was fabricated by laser to improve the wear resistance and service life of Cr12MoV die steel. The microstructures phases were analyzed scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD). properties tested hardness friction tester. results show that has good metallurgical bond with substrate. from top bottom are mainly equiaxed crystal, columnar dendrite, cellular dendrite. Combined physical phase analysis elemental distribution coating, there some phases, such as γ~(Fe, Ni), Cr23C6, WC, TiC, Fe3W3C, Cr2Ti. Compared steel substrate, resistance. background region grains is Ni). From EDS results, it can be seen rod-like particles, which uniformly distributed on coating. Some W Ti carbides form in grains. addition TiC particles improves WC refinement. highest 770.7 HV0.5, approximately 3.3 times higher than volume 0.26 mm3, or 8.6% contributed reinforced finer microstructure volumes substrate 1.8 4.5 mm3 at 20 60 min, respectively. While 0.2 0.7 increased amplitude coating’s smaller helpful for improving

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding

Ni-based alloy powders with different contents of cobalt (Co) have been deposited on a 42CrMo steel substrate surface using a fiber laser. The effects of Co content on the microstructure, composition, hardness, and wear properties of the claddings were studied by scanning electron microscopy (SEM), an electron probe microanalyzer (EPMA), X-ray diffraction (XRD), a hardness tester, and a wear te...

متن کامل

Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher mic...

متن کامل

Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed p...

متن کامل

Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment

Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing p...

متن کامل

Effect of SiC nanoparticles addition on mechanical properties and wear resistance of cemented carbides fabricated by spark plasma sintering

WC-10Co cemented carbides containing 1 to 4 wt% SiC nanoparticles were prepared by spark plasma sintering. The effects of SiC content on microstructure, mechanical properties and wear resistance of the sintered materials were studied. Microstructural studies showed that SiC addition resulted in WC grain coarsening. In addition, the hardness decreased with increasing SiC content. However, the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lubricants

سال: 2023

ISSN: ['2075-4442']

DOI: https://doi.org/10.3390/lubricants11040170